Abstract

Spinosad, a combination of spinosyn A and D produced by Saccharopolyspora spinosa, is a highly efficient pesticide. There has been a considerable interest in the improvement of spinosad production because of a low yield achieved by wild-type S. spinosa. In this study, we designed and constructed a pIBR-SPN vector. pIBR-SPN is an integrative vector that can be used to introduce foreign genes into the chromosome of S. spinosa. Different combinations of genes encoding forasamine and rhamnose were synthesized and used for the construction of different recombinant plasmids. The following recombinant strains were developed: S. spinosa pIBR-SPN (only the vector), S. spinosa pIBR-SPN F (forosamine genes), S. spinosa pIBR-SPN R (rhamnose genes), S. spinosa pIBR-SPN FR (forosamine and rhamnose genes), S. spinosa pIBR-SPN FRS (forosamine, rhamnose, and SAM [S-adenosyl-L-methionine synthetase] genes), and S. spinosa MUV pIBR-SPN FR. Among these recombinant strains, S. spinosa pIBR-SPN FR produced 1394 ± 163mg/L spinosad, which was 13-fold higher than the wild-type. S. spinosa MUV pIBR-SPN FR produced 1897 (±129)mg/L spinosad, which was seven-fold higher than S. spinosa MUV and 17-fold higher than the wild-type strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call