Abstract
Often hard real-time systems require results that are produced on time despite the occurrence of processor failures. This paper considers a distributed system where tasks are periodic and each task occurs in multiple copies which are periodically synchronized in order to handle failures. The problem of preemptively scheduling a set of such tasks is discussed where every occurrence of a task has to be completely executed before the next occurrence of the same task. First, a static scheduling algorithm is proposed which uses periodic checkpoints to tolerate processor failures. Then, the performance of the algorithm is substancially improved employing a mixed strategy which constructs a schedule where high frequency tasks are duplicated, and low frequency tasks are periodically checkpointed. The performance of the solution proposed is evaluated in terms of the minimum achievable processor utilization due to the useful computation of the tasks. Moreover, analytical and simulation studies are used to reveal interesting trade-offs associated with the scheduling algorithm. In particular, if high frequency tasks are less than 70 percent of the total number of tasks then the mixed strategy yields a higher processor utilization than the task duplication scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.