Abstract

Cancer screening trials have required large sample-sizes and long time-horizons to demonstrate cancer mortality reductions, the primary goal of cancer screening. We examine assumptions and potential power gains from exploiting information from testing control-arm specimens, which we call the "Intended Effect" (IE) analysis that we explain in detail herein. The IE analysis is particularly suited to tests that can be conducted on stored specimens in the control-arm, such as stored blood for multicancer detection (MCD) tests. We simulated hypothetical MCD screening trials to compare power and sample-size for the standard vs IE analysis. Under two assumptions that we detail herein, we projected the IE analysis for 3 existing screening trials (National Lung Screening Trial (NLST), Minnesota Colon Cancer Control Study (MINN-FOBT-A), and Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial-colorectal component (PLCO-CRC)). Compared to the standard analysis for the 3 existing trials, the IE design could have reduced cancer-specific mortality p-values 5-fold (NLST), 33-fold (MINN-FOBT-A), or 14,160-fold (PLCO-CRC), or alternately, reduced sample-size (90% power) by 26% (NLST), 48% (MINN-FOBT-A), or 59% (PLCO-CRC). For potential MCD trial designs requiring 100,000 subjects per-arm to achieve 90% power for multi-cancer mortality for the standard analysis, the IE analysis achieves 90% power for only 37,500-50,000 per arm, depending on assumptions concerning control-arm test-positives. Testing stored specimens in the control arm of screening trials to conduct the IE analysis could substantially increase power to reduce sample-size or accelerate trials, and provide particularly strong power gains for MCD tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call