Abstract

BackgroundMicrobial electrolysis cells (MECs) use bioelectrochemical reactions to remove organic contaminants at the bioanode and produce hydrogen gas at the cathode. High local pH conditions near the cathode can also be utilized to produce struvite from nutrient-rich wastewater. This beneficial aspect was investigated using lab-scale MECs fed with dewatering centrate collected at a local wastewater treatment plant. The main objective was to improve phosphorus recovery by examining various cathode configurations and electric current conditions.ResultsThe stainless steel mesh (SSM) cathode was relatively inefficient to achieve complete phosphorus recovery because struvite crystals were smaller (a few to tens of micrometers) than the open space between mesh wires (80 µm). As a result, the use of multiple pieces of SSM also showed a limited improvement in the phosphorus recovery up to only 68% with 5 SSM pieces. Readily available organic substrates were not sufficient in the dewatering centrate, resulting in relatively low electric current density (mostly below 0.2 A/m2). The slow electrode reaction did not provide sufficiently high pH conditions near the cathode for complete recovery of phosphorus as struvite. Based on these findings, additional experiments were conducted using stainless steel foil (SSF) as the cathode and acetate (12 mM) as an additional organic substrate for exoelectrogens at the bioanode. With the high electric current (>2 A/m2), a thick layer of struvite crystals was formed on the SSF cathode. The phosphorus recovery increased to 96% with the increasing MEC operation time from 1 to 7 days. With the high phosphorus recovery, estimated energy requirement was relatively low at 13.8 kWh (with acetate) and 0.30 kWh (without acetate) to produce 1 kg struvite from dewatering centrate.ConclusionsFor efficient phosphorus recovery from real wastewater, a foil-type cathode is recommended to avoid potential losses of small struvite crystals. Also, presence of readily available organic substrates is important to maintain high electric current and establish high local pH conditions near the cathode. Struvite precipitation was relatively slow, requiring 7 days for nearly complete removal (92%) and recovery (96%). Future studies need to focus on shortening the time requirement.

Highlights

  • Microbial electrolysis cells (MECs) use bioelectrochemical reactions to remove organic contaminants at the bioanode and produce hydrogen gas at the cathode

  • While there are a number of methods for phosphorus recovery from nutrient-rich wastewater, such as pyrolysis [6], ion exchange [7], distillation [8], and algae growth [9, 10], here we focused on the struvite precipitation method (MgNH4PO4∙6H2O) for efficient phosphorus recovery from dewatering centrate/filtrate in municipal wastewater treatment

  • While energy recovery as hydrogen is an important aspect of MEC studies, Fig. 1 a Schematic diagram of MEC constructed with the stainless steel mesh (SSM) cathode (5 SSM pieces). b Schematic diagram of MEC with the stainless steel foil (SSF) cathode we focused more on nutrient recovery and wastewater treatability of MECs in this study

Read more

Summary

Introduction

Microbial electrolysis cells (MECs) use bioelectrochemical reactions to remove organic contaminants at the bioanode and produce hydrogen gas at the cathode. High local pH conditions near the cathode can be utilized to produce struvite from nutrient-rich wastewater. This beneficial aspect was investigated using lab-scale MECs fed with dewatering centrate collected at a local wastewater treatment plant. Phosphorus recovery from wastewater has been emphasized in wastewater treatment research so that recovered phosphorus can be used as land fertilizers [4, 5]. While there are a number of methods for phosphorus recovery from nutrient-rich wastewater, such as pyrolysis [6], ion exchange [7], distillation [8], and algae growth [9, 10], here we focused on the struvite precipitation method (MgNH4PO4∙6H2O) for efficient phosphorus recovery from dewatering centrate/filtrate in municipal wastewater treatment. Struvite is a nutrient mineral that can be used as a valuable land fertilizer in the agricultural and landscaping industries

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call