Abstract
BackgroundD-Phenylglycine aminotransferase (D-PhgAT) is highly beneficial in pharmaceutical biotechnology. Like many other enzymes, D-PhgAT suffers from low stability under harsh processing conditions, poor solubility of substrate, products and occasional microbial contamination. Incorporation of miscible organic solvents into the enzyme’s reaction is considered as a solution for these problems; however, native D-PhgAT is not significantly stable in such solvents.ObjectiveHalophiles are known to survive and withstand unsavory habitats owing to their proteome bios. In the current study, with an eye on further industrial applications, we examined the performance and thermostability of four halophilic peptides fused D-PhgAT variants in reaction mixtures of various proportions of different miscible organic solvents and various temperatures as well as desiccation.Materials and MethodsPlasmid constructs from the previous study (Two alpha helixes and loops between them from Halobacterium salinarum ferredoxin enzyme fused at N-terminus domain of D-PhgAT) expressed in Escherichia coli and then D-PhgAT purified. Purified proteins were subjected to various proportions of miscible organic solvents, different temperatures, and desiccation and then performance and thermostability monitored.ResultsStudy confirmed increased C50 of all halophilic fused D-PhgAT variants, where the highest C50 observed for ALAL-D-PhgAT (30.20±2.84 %V/V). Additionally, all halophilic fused variants showed higher thermostability than the wild-type D-PhgAT in the presence of different fractions of acetone, N,N-Dimethylformamide and isopropanol in aqueous binary media, while zero activity observed at the presence of methanol.ConclusionOur results suggest that applying this new technique could be invaluable for making enzymes durable in discordant industrial conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.