Abstract

Two field experiments were conducted on bromegrass (Bromus inermis Leyss.) on a thin Black Chernozem (Typic Boroll) at Crossfield, Alberta, Canada to determine the long-term effects of N fertilization on changes in concentration and mass of organic C and N in soil. In both experiments, bromegrass was harvested for hay each year. In the experiment where ammonium nitrate (AN) was applied annually at 0 to 336 kg N/ha for 27 consecutive years from 1968 to 1994, the concentration of total C in the 0–5 cm soil layer increased from 50.33 g/kg in the zero-N treatment to 61.64 g/kg with 56 kg N/ha and to 64.15 g/kg with the 112 kg N/ha rate. Total C in soil also increased in the 5–10, 10–15 and 15–30 cm layers but to a lesser extent. The mass of total C in the 0–30 cm soil layer was increased by 18.46 Mg/ha with 56 kg N/ha and by 23.38 Mg/ha with the 112 kg N/ha rate as compared to the zero-N treatment. Total N in soil followed a similar trend as total C. In the experiment which received four N sources [ammonium nitrate (AN), urea, calcium nitrate (CN) and ammonium sulphate (AS)] applied annually at 168 and 336 kg N/ha for 15 years from 1979 to 1993, the total C in soil was greater where N fertilizer was applied, but the increase in total C varied with N source. The concentration of total C in soil in the 0–5 cm layer tended to be greater with AN and AS than with CN, with the smallest increase from urea. The mass of total C in soil (average of four N sources) at the 168 kg N/ha rate was increased by 18.98 Mg/ha in 0–30 cm and by 43.48 Mg/ha in the 0–60 cm layer as compared to the check treatment. The concentration of total C in soil also increased in the deeper layers to a depth of 60 cm, but the increases were much smaller than in the 0–5 cm layer. The changes in total N in soil followed a similar pattern as total C. In conclusion, long-term annual additions of fertilizer N to bromegrass resulted in a marked increase in total C and N in soil and the increases were influenced by both rate and source of N fertilizer. The implications of these results are that grasslands can be managed to lessen the increase in atmospheric CO2 concentration, while also improving fertility (N-supplying capacity) and tilth of soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.