Abstract

Rice ( Oryza sativa L.) is one of the essential foods of the human diet; advances in agronomic crop management can improve productivity and profitability as well as reduce adverse environmental impacts. Nitrogen rates in Chile are generally based on crop yield without considering other agronomic factors. The objective of this experiment was to determine the effect of increasing N rates on plant nutrient composition and N apparent recovery in rice cultivated in five different locations in Chile. The five sites located in central Chile belong to one of the following soil orders: Inceptisol, Alfisol, and Vertisol; they were cropped in field conditions with ‘Zafiro-INIA’ rice fertilized with 0, 80, and 160 kg N ha-1. Whole-plant total DM, macronutrient composition, and N apparent recovery efficiency (NARE) were determined at grain harvest. Results indicate that all evaluated parameters, with the exception of K concentration, were affected by the soil used. Nitrogen rates only affected total DM production and P, K, and Mg concentrations in plants. Phosphorus and K response decreased when N was added to some soils, which is associated with its chemical properties. Magnesium concentration exhibited an erratic effect, but it wasSnot affected by the N rate in most soils. Nitrogen apparent recovery efficiency was not affected by the N rate and accounted for approximately 49% and 41% for 80 and 160 kg N ha-1, respectively. Macronutrient composition was 5.1-7.7 g N, 1.3-1.8 g P, 5.4-10.8 g K, 1.68-2.57 g Ca, and 0.81-1.45 g Mg kg-1 of total DM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.