Abstract
ADP-glucose pyrophosphorylase (AGPase) plays a key role in regulating starch biosynthesis in cereal seeds and is likely the most important determinant of seed strength. The Escherichia coli mutant glgC gene (glgC16), which encodes a highly active and allosterically insensitive AGPase, was introduced into maize (Zea mays L.) under the control of an endosperm-specific promoter. Developing seeds from transgenic maize plants showed up to 2–4-fold higher levels of AGPase activity in the presence of 5 mM inorganic phosphate (Pi). Transgenic plants with higher cytoplasmic AGPase activity under Pi-inhibitory conditions showed increases (13–25%) in seed weight over the untransformed control. In addition, in all transgenic maize plants, the seeds were fully filled, and the seed number of transgenic plants had no significant difference compared with that of untransformed control. These results indicate that increasing cytoplasmic AGPase activity has a marked effect on sink activity and, in turn, seed weight in transgenic maize plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.