Abstract

Selection on estimated breeding value (EBV) alone maximises response to selection observed in the next generation, but repeated use of this selection criterion does not necessarily result in a maximum response over a longer time horizon. Selection decisions made in the current generation have at least 2 consequences. Firstly, they influence the immediate genetic response to selection and, secondly, they influence the inbreeding of the next and subsequent generations. Accumulation of inbreeding has a negative impact on future genetic response through reduction in future genetic variance and a negative impact on future performance if inbreeding depression affects the selected trait. Optimum selection decisions depend on the time horizon of interest. If this is known, then a breeding objective can be defined. A selection criterion is proposed in which the positive contributions of a selected group of parents to immediate genetic response (determined by their average EBV) is balanced against their negative contribution to future genetic response (determined by their contribution to inbreeding). The value assigned to the contribution to inbreeding is derived from the breeding objective. Selection of related individuals will be restricted if the detrimental value associated with inbreeding is high; restrictions on the selection of sibs, however, is flexible from family to family depending on their genetic merit. A selection algorithm is proposed which uses the selection criterion to select sires on 3 selection strategies, to select on i) a fixed number of sires; ii) a variable number of sires each allocated an equal number of matings; or iii) a variable number of sires allocated an optimal proportion of matings. Using stochastic simulation, these selection strategies for sires are compared with selection on EBV alone. When compared at the time horizon specified by the selection goal, the proposed selection criterion is successful in ensuring a higher response to selection at a lower level of inbreeding despite the selection of fewer sires. The selection strategy iii) exploits random year-to-year variations in the availability of individuals for selection and is successful in maximising response to the selection goal. The derivation of the value assigned to inbreeding is not exact and cannot guarantee that the overall maximum response is found. However, simulation results suggest that the response is robust to the detrimental value assigned to inbreeding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.