Abstract

Experiments have shown that closed-box conditions alter the transmission of respiratory oscillations (R waves) to organ blood flow already at a marginal pressure increase. How does the increasing intracranial pressure (ICP) interact with R waves in cerebral blood flow after head injury (HI)?Twenty-two head-injured patients requiring sedation and mechanical ventilation were monitored for ICP, Doppler flow velocity (FV) in the middle cerebral arteries, and arterial blood pressure (ABP). The analysis included transfer function gains of R waves (9-20 cpm) from ABP to FV, and indices of pressure-volume reserve (RAP) and autoregulation (Mx). Increasing ICP has dampened R-wave gains from day 1 to day 4 after HI in all patients. A large impact (ΔGain /ΔICP right: 0.14 ± 0.06; left: 0.18 ± 0.08) was associated with exhausted reserves (RAP ≥0.85). When RAP was <0.85, rising ICP had a lower impact on R-wave gains (ΔGain /ΔICP right: 0.05 ± 0.02; left: 0.06 ± 0.04; p < 0.05), but increased the pulsatility indices (right: 1.35 ± 0.55; left: 1.25 ± 0.52) and Mx indices (right: 0.30 ± 0.12; left: 0.28 ± 0.08, p < 0.05). Monitoring of R waves in blood pressure and cerebral blood flow velocity has suggested that rising ICP after HI might have an impact on cerebral blood flow directly, even before autoregulation is impaired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.