Abstract

The knife-edge detector (KED) has been used in transverse wave, scanning laser acoustic microscopes (SLAM) successfully for many years. It possesses a good balance between spatial bandwidth, detector noise insensitivity, and detector grain stability. Many detectors have tried to increase the bandwidth to improve the image resolution, only to be difficult to use and susceptible to vibration and mechanical variations. The authors have invented and designed a pyramidal detector (PD) that combines the stability and noise insensitivity of the KED with a significantly improved bandwidth in both axes of the object plane. The detector uses the entire signal provided at the detector to increase the signal to noise ratio and significantly decrease the cover slip spatial frequencies that are difficult to detect. The increased bandwidth allows image resolution approaching what an ideal detector could achieve. Additionally, unlike the KED, the PD spatial bandwidth is approximately isotropic to waves traveling in the cover slip. Increased spatial resolution and uniformity result. This property is particularly useful for back-propagation in tomographic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.