Abstract

Satellites have detected a global decline in burned area of grassland, coincident with a small increase in burned forest area. These contrasting trends have been reported in earlier literature; however, less is known of their impacts on global fire emission trends due to the scarcity of direct observations. We use an atmospheric inversion system to show that global fire emissions have been stable or slightly decreasing despite the substantial decline in global burned area over the past two decades caused by the carbon dioxide emission increase from forest fires offsetting the decreasing emissions from grass and shrubland fires. Forest fires are larger carbon dioxide sources per unit area burned than grassland fires, with a slow or incomplete follow-up recovery—sometimes no recovery due to degradation and deforestation. With fires expanding over forest areas, the slow recovery of carbon dioxide uptake over burned forest lands weakens land sink capacity, implying positive feedback on climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.