Abstract

The impacts of high-fat diets (HFDs) on the onset of metabolic endotoxemia and low-grade inflammation are well established in rodent models. However, the dose-effect of dietary lipid intakes on these parameters is not known. We hypothesized that increasing dietary lipid amounts could be linked to parallel increases of endotoxemia, low-grade inflammation, and metabolic and intestinal alterations. Six-week-old male C57BL/6J mice were fed a low-fat diet (LFD, 2.6 wt% of lipids), a moderate HFD (mHFD, 22 wt% of lipids), or a very HFD (vHFD, 45 wt% of lipids) formulated mainly using chow ingredients and milk fat. After 12 weeks, white adipose tissues, liver, intestine, distal colon contents, and plasma were collected. Only vHFD mice significantly increased body weight and fat mass vs LFD mice. This was associated with increases of plasma concentrations of triglycerides, leptin and adiponectin, and liver lipids. No such differences were observed between LFD and mHFD mice. However, mHFD developed metabolic endotoxemia and inflammation, unlike vHFD mice. In turn, vHFD mice showed more goblet cells in all intestine segments vs both other groups and a decrease of Bacteroides-Prevotella in their microbiota vs LFD mice. Finally, mHFD mice colon exhibited a decrease in lactobacilli and in the levels of occludin phosphorylation. Altogether, using complex HFD, no associations were observed between dietary lipid amounts and the magnitude of endotoxemia, inflammation, and physiological alterations developed. These results reveal the impact of the diet composition on intestinal goblet cells and mucus coat, bringing new insights about further consequences on HFD-induced metabolic disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call