Abstract

Floods and debris flows pose a significant threat, especially when extreme rain falls over burned areas. This is an example of a compound event in which two concurrent or consecutive events lead to extreme societal impacts. Compound and cascading hazards are becoming increasingly important and have notable impacts on threatened communities across the world. Wildfire followed by an intense precipitation event can result in a large flood under which the combined impacts of hazard drivers are much more intense than those from individual drivers. Here, we first quantify the change in exposure of natural gas infrastructure to individual hazards, wildfire and floods in the future relative to past. We, then quantify the compound hazards as coincidence likelihood of intense rain over burned areas and analyze the spatial patterns across the State of California, USA. Our results show that not only the exposure of natural gas infrastructure to individual hazards would be higher, the likelihood of compound hazards is expected to increase substantially in a warming climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.