Abstract

Sleep consolidates newly acquired memories. Beyond stabilizing memories, sleep is thought to reorganize memory representations such that invariant structures, statistical regularities and even new explicit knowledge are extracted. Whereas increasing evidence suggests that the stabilization of memories during sleep can be facilitated by cueing with learning-associated stimuli, the effect of cueing on memory reorganization is less well understood. Here we asked whether olfactory cueing during sleep enhances the generation of explicit knowledge about an implicitly learned procedural memory task. Subjects were trained on a serial reaction time task (SRTT) containing a hidden 12-element sequence in the presence of an odor. During subsequent sleep, half of the subjects were re-exposed to the odor during periods of slow wave sleep (SWS), while the other half received odorless vehicle. In the next morning, subjects were tested on their explicit knowledge about the underlying sequence in a free recall test and a generation task. Although odor cueing did not significantly affect overall explicit knowledge, differential effects were evident when analyzing male and female subjects separately. Explicit sequence knowledge, both in free recall and the generation task, was enhanced by odor cueing in men, whereas women showed no cueing effect. Procedural skill in the SRTT was not affected by cueing, neither in men nor in women. These findings suggest that olfactory memory reactivation can increase explicit knowledge about implicitly learned information, but only in men. Hormonal differences due to menstrual cycle phase and/or hormonal contraceptives might explain the lacking effect in women.

Highlights

  • There is growing evidence that the processing of memory during sleep fosters the unique ability to detect regular patterns of information in the world and to abstract generalized rules

  • Free recall of the underlying serial reaction time task (SRTT) sequence was numerically enhanced in subjects who had received the odor stimulation during sleep compared to the vehicle group, but this difference failed to reach significance (odor vs. vehicle: 7.12 ± 0.62 vs. 6.00 ± 0.66 correctly recalled sequence elements, t(31) = 1.23, p = 0.23; Figure 2A)

  • We show that the presentation of learning-associated olfactory reminder cues during slow wave sleep (SWS) can enhance the extraction of explicit knowledge about an implicitly learned SRTT motor sequence

Read more

Summary

Introduction

There is growing evidence that the processing of memory during sleep fosters the unique ability to detect regular patterns of information in the world and to abstract generalized rules. Sleep supported processes such as pattern detection, abstraction, generalization and the development of explicit knowledge about regularities in materials learnt before sleep (Lewis and Durrant, 2011; Stickgold and Walker, 2013; Landmann et al, 2014). In an assumed process of system consolidation, sleep restructures and redistributes newly encoded memory traces (Walker and Stickgold, 2010; Lewis and Durrant, 2011; Genzel et al, 2014b), which can qualitatively change memory representations and lead to the generation of new knowledge (Payne, 2011a,b). Sleep can promote the conversion of implicitly learned regular patterns into explicit knowledge about those regularities, which was found to be associated with the amount of slow wave sleep (SWS; Wilhelm et al, 2013)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.