Abstract

AbstractIn the paper industry, machine circular knives are used in the cutting process to provide industrial quality cuts on a variety of products. In the production of paper rolls, they cut the long-rolled paper products into commercial sizes. For this application, the high-alloyed ledeburitic cold work tool steel, DIN EN 1.2379 (X153CrMoV12; AISI D2), in the secondary hardened heat-treated condition has become the widely used industry solution. However, its heat treatment is a very energy-intensive production process. It consists of a quenching from an austenitizing temperature above 1050 °C, followed by three high-temperature tempering steps of more than 500 °C. In the study, the heat treatment process was optimized for energy efficiency, resulting in superior material properties with lower energy consumption. The most promising low energy heat treatment developed in the laboratory was reproduced in the industrial scale, and the required energy consumption was quantified. Subsequently, the resulting properties of the tools such as hardness, wear resistance and fracture toughness were determined. The energy production costs and mechanical properties of the tool steel were evaluated in comparison to conventional production methods. The newly applied heat treatment condition showed very promising and positive results in all analyzed parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.