Abstract

Alloys comprising common alloying elements are more amenable to accepting high fractions of scrap. The present study examines the effect of Cu and Al addition on common element containing multiple principal element alloy (CE-MPEA): AlxCuyCrFeMnNi (x = 0, 0.15, 0.3, 0.6, 0.9 and y = 0, 0.07, 0 = 0.14). Alloys were fabricated by arc casting. As expected, after quenching, the microstructures displayed FCC A1, Cr-rich BCC A2 and B2 precipitate phases in varying amounts. Adding small amounts of Cu to low and medium Al alloy groups increased the FCC phase fraction and refined the FCC grains. It is proposed that these microstructural changes account for the increased ductility seen to accompany Cu addition. A hybrid model was successfully employed to predict the hardness of the FCC phase. In contrast to high Cu-containing HEAs from prior studies, Cu additions in the studied alloys did not detrimentally affect the corrosion resistance in idealised polarization corrosion tests in salt solution. This can be ascribed to the absence of a Cu-rich FCC phase at the low Cu levels employed in the present work. The current alloys show promise as a base composition for further development into a tough fine-grained stainless alloy able to be produced using high fractions of scrap input.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call