Abstract
Blueberries are rich sources of bioactive polyphenols that may provide health benefits when consumed regularly, leading to their increased marketing as dietary supplements. However, the metabolic changes associated with consuming concentrated doses of purified polyphenols, as may be present in dietary supplements, are unknown, especially when considering the colonic metabolites formed. This study aimed to evaluate the pharmacokinetics of high doses of purified blueberry polyphenols. 5-month old, ovariectomized Sprague-Dawley rats are acutely dosed with purified blueberry polyphenols (0, 75, 350, and 1000mg total polyphenols per kg body weight (bw)) and 45 Ca to measure calcium absorption. Blood and urine are collected for 48 h after dosing and phenolic metabolites measured via ultra high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The most prominent metabolites are colonically generated cinnamic and hippuric acids. Smaller amounts of other phenolic acids, flavonols, and anthocyanins are also detected. Most metabolites follow a dose-response relationship, though several show saturated absorption. Maximal metabolite concentrations are reached within 12 h for a majority of compounds measured, while some (e.g., hippuric acid) peaked up to 24 h post-dosing. Calcium absorption is significantly increased in the highest dose group (p = 0.03). These results indicate that increased doses of blueberry polyphenols induce changes in intestinal phenolic metabolism and increase calcium absorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.