Abstract

Abstract Successful phasing of synchrotron through-the-substrate microdiffraction data by δ-recycling direct-methods largely depends on the number of missing intensities caused by the limited sample rotation range [J. Rius, Direct phasing from Patterson syntheses by δ recycling. Acta Cryst. A 2012, 68, 77–81]. Particularly, for the unfavorable triclinic system, dataset completeness resulting from a single series of consecutive ϕ-scans covering a total ϕ interval of ±35° is around 41%. This value is not enough for the routinary solution of a crystal structure by δ-recycling but can be increased by ~29% by applying the orthogonal χ strategy consisting of merging the information of two series of orthogonal ϕ-scans collected at the same microvolume of the polished thin section. Test calculations using simulated and experimental tts-data of the triclinic mineral axinite confirm that, with the help of the orthogonal χ strategy, crystal structures can be solved routinely. Since data in the ±35 ϕ-interval are normally accessible even for relatively thick glass-substrates (1–1.5 mm), a crystal structure can be determined from a single microvolume. For high-symmetry phases, due to the Laue symmetry redundancy, a single series of ϕ-scans normally suffices for the application of δ-recycling. However, when for experimental causes this series is incomplete, the orthogonal χ strategy also provides a simple way to increase the completeness which besides allowing solving the structure, is also beneficial for the subsequent refinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.