Abstract
Typical antipsychotics (haloperidol) give rise to severe motor side-effects while atypical antipsychotics like clozapine do not. Action at several neurotransmitter receptors have been implicated. To identify the critical mechanisms involved we synthesized an 8-C1 isomer of clozapine which showed an equivalent affinity to clozapine on multiple receptors (5-HT1A, 5-HT2, D1, D4, M1) but differed in having a 10-fold higher affinity at the dopamine D2/3 receptor. When tested in a series of animal models indicative of the typical/atypical distinction (catalepsy, striatal gene-induction, prolactin elevation) isoclozapine lost atypical properties and behaved like a typical antipsychotic. Simultaneous in vivo receptor occupancy studies confirmed that alterations in D2 receptor occupancy were most closely related to loss of atypicality by clozapine's isomer isoclozapine. The implications for the design of future antipsychotics is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.