Abstract

The paper is concerned with a nonlinear system of delayed differential equations as a generalization of an equation describing a simple model of the fluctuation of biological populations. The dependence of the behavior of monotone solutions on the coefficients and delays is studied and optimal sufficient conditions are derived for the existence of increasing and unbounded solutions and for the existence of increasing and convergent solutions. Inequalities estimating such solutions with some given increasing functions are derived as well. The results are compared with the linear case illustrated by examples, and open problems are formulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.