Abstract

Unknown metabolites represent a bottleneck in untargeted metabolomics research. Ion mobility-mass spectrometry (IM-MS) facilitates lipid identification because it yields collision cross section (CCS) information that is independent from mass or lipophilicity. To date, only a few CCS values are publicly available for complex lipids such as phosphatidylcholines, sphingomyelins, or triacylglycerides. This scarcity of data limits the use of CCS values as an identification parameter that is orthogonal to mass, MS/MS, or retention time. A combination of lipid descriptors was used to train five different machine learning algorithms for automatic lipid annotations, combining accurate mass ( m/ z), retention time (RT), CCS values, carbon number, and unsaturation level. Using a training data set of 429 true positive lipid annotations from four lipid classes, 92.7% correct annotations overall were achieved using internal cross-validation. The trained prediction model was applied to an unknown milk lipidomics data set and allowed for class 3 level annotations of most features detected in this application set according to Metabolomics Standards Initiative (MSI) reporting guidelines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.