Abstract

Stomatopods are well studied for their unique visual systems, which can consist of up to 16 different photoreceptor types and 33 opsin proteins expressed in the adults of some species. The light-sensing abilities of larval stomatopods are comparatively less well understood with limited information about the opsin repertoire of these early-life stages. Early work has suggested that larval stomatopods may not possess the extensive light detection abilities found in their adult counterparts. However, recent studies have shown that these larvae may have more complex photosensory systems than previously thought. To examine this idea at the molecular level, we characterized the expression of putative light-absorbing opsins across developmental stages, from embryo to adult, in the stomatopod species Pullosquilla thomassini using transcriptomic methods with a special focus on ecological and physiological transition periods. Opsin expression during the transition from the larval to the adult stage was further characterized in the species Gonodactylaceus falcatus. Opsin transcripts from short, middle, and long wavelength-sensitive clades were found in both species, and analysis of spectral tuning sites suggested differences in absorbance within these clades. This is the first study to document the changes in opsin repertoire across development in stomatopods, providing novel evidence for light detection across the visual spectrum in larvae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call