Abstract
This paper establishes asymptotic results for the maximum likelihood and restricted maximum likelihood (REML) estimators of the parameters in the nested error regression model for clustered data when both of the number of independent clusters and the cluster sizes (the number of observations in each cluster) go to infinity. Under very mild conditions, the estimators are shown to be asymptotically normal with an elegantly structured covariance matrix. There are no restrictions on the rate at which the cluster size tends to infinity but it turns out that we need to treat within cluster parameters (i.e. coefficients of unit-level covariates that vary within clusters and the within cluster variance) differently from between cluster parameters (i.e. coefficients of cluster-level covariates that are constant within clusters and the between cluster variance) because they require different normalisations and are asymptotically independent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Statistical Planning and Inference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.