Abstract

Insoluble milk mineral residues from whey processing, dominated by hydroxyapatite and calcium hydrogen phosphate, dissolved isothermally in aqueous gluconate/δ-gluconolactone, spontaneously forming solutions supersaturated in both calcium hydrogen phosphate and calcium gluconate. Calcium concentration of maximally supersaturated solutions was proportional to gluconate concentration, indicating gluconate assisted dissolution, while gluconolactone increased calcium available for dissolution and supersaturation. Precipitation of calcium gluconate, rather than of calcium hydrogen phosphate, was critical for supersaturation robustness. For calcium gluconate ionic product:solubility product of calcium gluconate ratios <12, the supersaturated solutions had a lag phase for precipitation of several weeks, which increased to several months by addition of solid calcium saccharate prior to dissolution of the mineral residues. Such supersaturated solutions with up to 7 g calcium L−1, corresponding to a factor of supersaturation of >100 times compared with equilibrium calcium hydrogen phosphate solubility, may be exploited for increasing calcium availability of whey mineral based functional foods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.