Abstract
BackgroundThe GE Discovery NM (DNM) 530c/570c are dedicated cardiac SPECT scanners with 19 detector modules designed for stationary imaging. This study aims to incorporate additional projection angular sampling to improve reconstruction quality. A deep learning method is also proposed to generate synthetic dense-view image volumes from few-view counterparts. MethodsBy moving the detector array, a total of four projection angle sets were acquired and combined for image reconstructions. A deep neural network is proposed to generate synthetic four-angle images with 76 (4 × 19) projections from corresponding one-angle images with 19 projections. Simulated data, pig, physical phantom, and human studies were used for network training and evaluation. Reconstruction results were quantitatively evaluated using representative image metrics. The myocardial perfusion defect size of different subjects was quantified using an FDA-cleared clinical software. ResultsMulti-angle reconstructions and network results have higher image resolution, improved uniformity on normal myocardium, more accurate defect quantification, and superior quantitative values on all the testing data. As validated against cardiac catheterization and diagnostic results, deep learning results showed improved image quality with better defect contrast on human studies. ConclusionIncreasing angular sampling can substantially improve image quality on DNM, and deep learning can be implemented to improve reconstruction quality in case of stationary imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.