Abstract

Biogas is the combustible gas produced through a biological process, known as anaerobic digestion which is the process operated at low-temperature and without air. Biogas consists of 55-80% CH4, 20-45% CO2 with trace amount of H2S and other impurities. Common H2S removal technologies from biogas fall into one of adsorption on a solid such as iron oxide based materials, activated carbon or impregnated activated carbon. Conventionally, activated carbon is produced from biomass residues and agricultural residues such as palm oil shell which promising approach for the production of cheap. It is so due to the palm oil shell carries a large amount of carbon content which it is the main composition of activated carbon. Therefore, it is usable as raw material for producing impregnated activated carbon and used as adsorbents. The aim of this study is a produce the activated carbon from palm oil shells by chemical activation using ZnCl2 and optimal conditions after impregnated them with NaOH, KI and K2CO3 for H2S absorption from biogas product. In this research, production of activated carbon involved three stages; (i) carbonization of raw material in an inert atmosphere which was carbonized in a muffle furnace at 600°C for 1 h; (ii) secondly activation of char product from the first stages at fixed bed reactor (stainless steel with 54.1 mm internal diameter and 320 mm length) which was studied to observe the effect of char product: Chemical agent ratio (ZnCl2, 1:1 to 1:3), which there are activated at 700°C activation temperature for 2 h; and (iii) finally alkali impregnated activated carbon which were immersed 1:3 ratio in 500 mL of 1 N NaOH, KI and K2CO3 solutions and stirred for 30 min. The result showed that the surface area and the pore volume increased progressively with increasing the char product: Chemical agent ratio. The maximum surface area total pore volume of activated carbon product was 532.31 m2/g and 0.2973 cc g-1 was obtained on ACZn13. While, the maximum surface area and the pore volume of modified impregnated activated carbon was 741.71 m2/g and 0.4210 cc g-1 was obtained on K2CO3-AC. The results of the experiment demonstrated that with regard to adsorption of H2S on K2CO3-AC which it had more than on KI-AC and NaOH was 3.26 and 8.8%, respectively. The conclusion showed that surface area, total pore volume and micropore volume were increasing with increased the char product: Chemical agent ratio (1:1 to 1:3). ACZn13 has good chemical and physical properties such as chemical content and surface area, which showed that the highest surface area (532.21 m2/g) and total pore volume (0.2973 cc g-1). Therefore, K2CO3-AC impregnated activated carbon has a high surface area and showed be an efficient adsorbent for removal of H2S from biogas product. Moreover, evaluating the content of H2S adsorption was suggested.

Highlights

  • Thailand has been well recognized as one of the top exporters of agricultural biotechnology with traditional energy sources

  • Wasan Phooratsamee et al / American Journal of Environmental Sciences 10 (5): 431-445, 2014 properties such as chemical content and surface area, which showed that the highest surface area (532.21 m2/g) and total pore volume (0.2973 cc g−1)

  • The results presented in this research show that the potentials of palm oil shell as a raw material for the preparation of modified activated carbon for H2S adsoption from biogas product (Saitawee et al, 2014)

Read more

Summary

Introduction

Thailand has been well recognized as one of the top exporters of agricultural biotechnology with traditional energy sources. Focus on environmental problems from industrial waste, palm oil shells from factory wastes agriculture in Thailand. Utilization of agricultural wastes to produce activated carbon is an important approach in air pollution control strategy. The products of palm oil mill are to plant oil palm in Thailand can be produced 1.7×106 tons/year. Palm oil shell occurs from extraction process about 153,000 tons/year of general machinery, appliances, palm fiber and shell as fuel to power the boiler. Low cost palm oil residues are considered promising adsorbents for adsorption applications. It is cheaper and readily available materials

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call