Abstract

Prion diseases, also termed transmissible spongiform encephalopathies (TSEs), are rare and fatal neurodegenerative conditions that affect both humans and animals. Although there is increased evidence that oxidative stress plays an important role in the pathogenesis of these diseases, the direct relationship between an accumulation of abnormal prion protein (PrP Sc ) and the occurrence of oxidative stress has not been studied. In the present study, we have investigated the cellular localization of proteins modified by lipid peroxidation end products and its correlation with PrP Sc accumulation in the brain of mice infected with the ME7 prion strain. Intense immunostaining of malondialdehyde (MDA)- and hydroxynonenal (HNE)-modified proteins were observed in the hippocampus of prion-infected mice. In serial section study, we found that these immunoreactivities were co-localized with glial fibrillary acidic protein (GFAP)-positive astrocytes as well as with PrP Sc . These results clearly indicate that the heightened oxidative stress in the form of lipid peroxidation is closely associated with PrP Sc accumulation in astrocytes of prion-infected mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.