Abstract

The effect of chemical anoxia (azide) in the presence of glucose on the free intracellular Ca2+ concentration ([Ca2+]i) and intracellular pH (pHi) in mouse neocortical neurons was investigated using Fura-2 and BCECF. Anoxia induced a reversible increase in [Ca2+]i which was significantly inhibited in nominally Ca2+-free medium. A change in pHo (8.2 or 6.6), or addition of NMDA and non-NMDA receptor antagonists (D-AP5 and CNQX) in combination, significantly reduced the increase in [Ca2+]i, pointing to a protective effect of extracellular alkalosis or acidosis, and involvement of excitatory amino acids. An initial anoxia-induced acidification was observed under all experimental conditions. In the control situation, this acidification was followed by a recovery/alkalinization of pHi in about 50% of the cells, a few cells showed no recovery, and some showed further acidification. EIPA, an inhibitor of Na+/H+ exchangers, prevented alkalinization, pointing towards anoxia-induced activation of a Na+/H+ exchanger. In a nominally Ca2+-free medium, the initial acidification was followed by a significant alkalinization. At pHo 8.2, the alkalinization was significantly increased, while at pHo 6.2, the initial acidification was followed by further acidification in about 50% of the cells, and by no further change in the remaining cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.