Abstract

Objective: Proton magnetic resonance spectroscopy (1H-MRS) in ultra-high magnetic field can be used for non-invasive quantitative assessment of brain glutamate (Glu) and glutamine (Gln) in vivo. Glu, the main excitatory neurotransmitter in the central nervous system, is efficiently recycled between synapses and presynaptic terminals through Glu-Gln cycle which involves glutamine synthase confined to astrocytes, and uses 60–80% of energy in the resting human and rat brain. During voluntary or involuntary exercise many brain areas are significantly activated, which certainly intensifies Glu-Gln cycle. However, studies on the effects of exercise on 1H-MRS Glu and/or Gln signals from the brain provided divergent results. The present study on rats was performed to determine changes in 1H-MRS signals from three brain regions engaged in motor activity consequential to forced acute exercise to exhaustion.Method: After habituation to treadmill running, rats were subjected to acute treadmill exercise continued to exhaustion. Each animal participating in the study was subject to two identical imaging sessions performed under light isoflurane anesthesia, prior to, and following the exercise bout. In control experiments, two imaging sessions separated by the period of rest instead of exercise were performed. 1H-NMR spectra were recorded from the cerebellum, striatum, and hippocampus using a 7T small animal MR scanner.Results: Following exhaustive exercise statistically significant increases in the Gln and Glx signals were found in all three locations, whereas increases in the Glu signal were found in the cerebellum and hippocampus. In control experiments, no changes in 1H-MRS signals were found.Conclusion: Increase in glutamine signals from the brain areas engaged in motor activity may reflect a disequilibrium caused by increased turnover in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons. Increased turnover of Glu-Gln cycle may be a result of functional activation caused by forced endurance exercise; the increased rate of ammonia detoxification may also contribute. Increases in glutamate in the cerebellum and hippocampus are suggestive of an anaplerotic increase in glutamate synthesis due to exercise-related stimulation of brain glucose uptake. The disequilibrium in the glutamate-glutamine cycle in brain areas activated during exercise may be a significant contributor to the central fatigue phenomenon.

Highlights

  • Proton magnetic resonance spectroscopy (1H-MRS) in vivo enables non-invasive acquisition of certain information about brain biochemistry in animals and humans

  • Analysis of the MR spectra revealed that after exercise Gln in the striatum was increased by 13% when scaled to the signal of creatine and phosphocreatine (tCr) (p ≤ 0.001) and by 15% when scaled to water (p ≤ 0.001), and the combined glutamine-glutamate signal (Glx) was increased by 7% and by 9%, but there was no significant difference in Glu

  • In the cerebellum Gln was increased by 32% when scaled to tCr (p ≤ 0.001) and by 34% when scaled to water (p ≤ 0.001), Glu was increased by 10%, by 11% and Glx was increased by 17%, by 18%

Read more

Summary

Introduction

Proton magnetic resonance spectroscopy (1H-MRS) in vivo enables non-invasive acquisition of certain information about brain biochemistry in animals and humans. A notable advantage of this technique over alternative approaches, such as ex vivo chemical assays of metabolites in tissue samples, is its noninvasive character which makes possible repeat measurements in the same subject, nullifying interindividual variability. Thanks to this feature MRS is a very suitable technique for monitoring metabolic changes due to disease and effects of treatment (van der Graaf, 2010). Recently human studies at ultra-high magnetic fields (≥7 T) demonstrated the feasibility of quantifying up to 18 brain metabolites, including glutamate (Glu) and glutamine (Gln) quantified separately in vivo (Öz et al, 2013; Rae, 2014)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call