Abstract
Certain metabolites in the tumor microenvironment (TME) can alter innate immunity. Here, it is shown how phosphomevalonate kinase (PMVK) allows hepatocellular carcinoma (HCC) cells to overcome the anti-tumor immunity mediated by CD8+ T cells. In HCCs, depletion of PMVK is required to facilitate CD8+ T cell activation and their subsequent suppression of tumor growth. Mechanistically, PMVK phosphorylates and stabilizes glutamate decarboxylase 1 (GAD1), thus increasing the synthesis of γ-aminobutyric acid (GABA), which normally functions as a neurotransmitter. However, PMVK also recruits acetyl-CoA acetyltransferase 1 (ACAT1) and allows it to convert GABA, to 4-acetaminobutyric acid (4-Ac-GABA), which is released into the TME. There, 4-Ac-GABA activates the GABAA receptor (GABAAR) on CD8+ T cells, which inhibits AKT1 signaling. This in turn suppresses CD8+ T cell activation, intratumoral infiltration, and the anti-tumor response. Inhibiting PMVK or GABAAR in HCC mouse models overcomes resistance to anti-PD-1 immune checkpoint therapy. These findings reveal non-canonical and cooperative functions among the key metabolic enzymes PMVK, GAD1, and ACAT1 that reprogram glutamine metabolism to synthesize a potent CD8+ T cell inhibitor 4-Ac-GABA. Blocking 4-Ac-GABA signaling in CD8+ T cells, particularly when combined with immune checkpoint inhibition, potentially represents a new and potent form of immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.