Abstract

ObjectivesExcess gestational folic acid and insufficient choline intakes as observed in the North American populations may increase the risk of obesity in offspring. It is well-established that adverse health outcomes may arise due to shifts in the gut microbial communities, but whether high vitamin intakes or an imbalance between methyl nutrients contributes to gut microbiota alterations is unclear. The objective of this research was to determine the gut microbiota composition of male and female offspring in relation to the vitamin composition of the gestational diet. MethodsPregnant Wistar rats (n = 10/group) were fed the AIN-93G diet with either the recommended vitamin (RV), high multivitamin (HV), high folic acid (HFol) or high folic acid without choline (HFol-C) content. Male and female offspring were weaned to a high-fat control diet for 12 weeks. Fecal samples were collected from the colon upon termination for gut microbiota profiling by 16S rRNA sequencing and data analyses in QIIME2. ResultsThe overall gut microbial communities as assessed by unweighted UniFrac distances differed among the gestational diet groups for male (PERMANOVA P = 0.04) and female (PERMANOVA P = 0.05) offspring. The covariates gestational diet and sex predicted the gut microbiota differences in the offspring (Q2 = 0.07 in Songbird) whereas diet alone resulted in overfitting of the multinomial regression model (Q2 < 0). High ranked features from the natural log-ratios of microbial abundance were Shigella, Clostridiales, Clostridiaceae for HV, and Odoribacter, Akkermansia muciniphila, Blautia for both HFol and HFol-C compared to RV. Low ranked features were Odoribacter for HV, Clostridiaceae and Clostridiales for HFol, and Bifidobacterium, Allobaculum, Lactobacillus vaginalis for HFol-C compared to RV. In male offspring, Lactobacillus vaginalis, Sutterella and Clostridiales were high ranked and Odoribacter was low ranked compared to female offspring. These differentially abundant microbes may be important contributors to obesity across diet and sex. ConclusionsIncreased vitamin content or an imbalance between folic acid and choline in the gestational diet leads to a shift in the gut microbiota composition in the offspring toward obesity. These effects differed by sex. Funding SourcesUtah Agricultural Experiment Station and USU Research Catalyst. UNM supported by USU URCO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call