Abstract
Metarhizium acridum is a host-specific fungal pathogen with great potential for locust control. However, the slow killing action of M. acridum has impeded its widespread application. To enhance fungal virulence, we constructed transgenic M. acridum strains that express double-stranded (ds)RNAs targeting the genes of the F1 F0 -ATP synthase α and β subunits in Locusta migratoria. The two host genes were transcriptionally suppressed in L. migratoria nymphs (instar V) infected by RNA interference (RNAi) strains targeting one or two subunit genes of the host ATP synthase, followed by reduced ATPase activity and ATP synthesis. Consequently, the RNAi strain targeting both subunit genes displayed high virulence that was 3.7-fold that in the wild-type strain. Our results demonstrate that dsRNA expression in M. acridum can cause host RNA silencing during infection and greatly enhances the fungal virulence through interference with critical host genes, highlighting a new strategy for augmentation of fungal virulence against insect pests. © 2018 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.