Abstract

Hypothalamic glutamate (Glu) and γ-GABA neurotransmission are involved in the ovarian hormone-induced gonadotrophin-releasing hormone (GnRH)/luteinising hormone (LH) surge in rodents. Studies have shown that reduced Glu and increased γ-GABA in the rostral preoptic area (rPOA) of the hypothalamus, where most activated GnRH neurones are located, play a key role in decreasing the reproductive function of female rats. However, the mechanism underlying the altered balance of these neurotransmitters is poorly understood. In the present study, we observed a decline in the function of GnRH neurones in the rPOA at the time of the GnRH/LH surge in middle-aged intact female mice with regular oestrous cycles. In young mice, there is an increase of vesicular Glu transporter 2 on the pro-oestrus afternoon, which is not observed in middle-aged mice. By contrast, vesicular γ-GABA transporter levels in young mice decrease at the time of the LH surge, whereas they increase in middle-aged mice. Of note, we found that, in middle-aged mice at the time of the GnRH/LH surge, the phosphorylation of synapsin I at Ser603 and Ca(2+) /calmodulin-dependent kinase IIα was significantly lower than in young mice. These data suggest that, in middle-aged mice, higher levels of presynaptic stores of GABA, a lack of increase of Glu and a decreased ability of synaptic vesicle mobilisation could account for the imbalance of Glu and GABA in the rPOA, which decreases the activation of GnRH neurones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.