Abstract

Demand response (DR) will play an essential role in smart grids by contributing to the operational flexibility requirement arising from the increased penetration of intermittent renewable generation. However, DR activation could be hampered in the absence of intelligent network management. Real-time thermal rating (RTTR) functions as a smart network management tool for unlocking the network capacities by allowing the network to safely operate during overload states. This paper offers an optimal residential DR approach integrated with RTTR to balance the hourly wind power production. The proposed framework is modeled from the perspective of an electrical aggregator that manages the population of heating, ventilation and air-conditioning (HVAC) loads for wind power balancing considering the RTTR of a distribution network. The model schedules the HVAC loads without deterioration of the customers' temperature preferences. To demonstrate the performance of the proposed approach, simulations are performed on a typical Finnish distribution network plan. The results demonstrate the considerable benefits that can be realized by coordinating the DR and RTTR in a distribution network for wind generation balancing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.