Abstract

BackgroundMononuclear platinum anticancer agents hold a pivotal place in the treatment of many forms of cancers, however, there is a potential to improve response to evade resistance development and toxic side effects. BBR3464 is a promising trinuclear platinum anticancer agent, which is a polyamine mimic. The aim was to investigate the influence of polyamine pool reduction on the cytotoxic effects of the trinuclear platinum complex BBR3464 and cisplatin. Polyamine pool reduction was achieved by treating cells with either the polyamine biosynthesis inhibitor α-difluoromethylornithine (DFMO) or the polyamine analogue N1,N11-diethylnorspermine (DENSPM).MethodsA human squamous cell carcinoma cell line, LU-HNSCC-4, established from a primary head and neck tumour was used to evaluate cellular effects of each drug alone or combinations thereof. High-performance liquid-chromatography was used to quantify intracellular polyamine contents. Inductively coupled mass spectroscopy was used to quantify intracellular platinum uptake. Cells were exposed to DFMO or DENSPM during 48 h at concentrations ranging from 0 to 5 mM or 0 to 10 μM, respectively. Thereafter, non-treated and treated cells were exposed to cisplatin or BBR3464 during 1 h at concentrations ranging from 0 to 100 μM. A 96-well assay was used to determine cytotoxicity after five days after treatment.ResultsThe cytotoxic effect of BBR3464 on LU-HNSCC-4 cells was increased after cells were pre-treated with DENSPM or DFMO, and the interaction was found to be synergistic. In contrast, the interaction between cisplatin and DFMO or DENSPM was near-additive to antagonistic. The intracellular levels of the polyamines putrescine and spermidine were decreased after treatment with DFMO, and treatment with DENSPM resulted in an increase in putrescine level and concomitant decrease in spermidine and spermine levels. The uptake of BBR3464 was significantly increased after pre-treatment of the cells with DFMO, and varied dependent on the concentration of DENSPM. The uptake of cisplatin was unchanged.ConclusionsTaken together, these results demonstrate that combinations of polyamine synthesis inhibitors with BBR3464 appear to be a promising approach to enhance the anticancer activity against HSCC.

Highlights

  • Mononuclear platinum anticancer agents hold a pivotal place in the treatment of many forms of cancers, there is a potential to improve response and survival in patients

  • DFMO treatment reduced the total pool of polyamines

  • The results presented here indicate that combination of polyamine synthesis inhibitors with BBR3464, investigated in an in vitro HNSCC cell line established from a primary head and neck tumour, may be a potential regimen for head and neck cancer chemotherapy

Read more

Summary

Introduction

Mononuclear platinum anticancer agents hold a pivotal place in the treatment of many forms of cancers, there is a potential to improve response and survival in patients. Development of resistance to therapy and toxic side effects are major problems, which have prompted research into new platinum drugs, displaying different mechanisms of action. One such compound is BBR3464, which is a promising trinuclear platinum anticancer agent. Mononuclear platinum anticancer agents hold a pivotal place in the treatment of many forms of cancers, there is a potential to improve response to evade resistance development and toxic side effects. The aim was to investigate the influence of polyamine pool reduction on the cytotoxic effects of the trinuclear platinum complex BBR3464 and cisplatin. Polyamine pool reduction was achieved by treating cells with either the polyamine biosynthesis inhibitor α-difluoromethylornithine (DFMO) or the polyamine analogue N1,N11-diethylnorspermine (DENSPM)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call