Abstract

ABSTRACT Rapid and significant range expansion of both Zika virus (ZIKV) and its Aedes vector species has resulted in ZIKV being declared a global health threat. Mean temperatures are projected to increase globally, likely resulting in alterations of the transmission potential of mosquito-borne pathogens. To understand the effect of diurnal temperature range on the vectorial capacity of Ae. aegypti and Ae. albopictus for ZIKV, longevity, blood-feeding and vector competence were assessed at two temperature regimes following feeding on infectious blood meals. Higher temperatures resulted in decreased longevity of Ae. aegypti [Log-rank test, χ2, df 35.66, 5, P < 0.001] and a decrease in blood-feeding rates of Ae. albopictus [Fisher's exact test, P < 0.001]. Temperature had a population and species-specific impact on ZIKV infection rates. Overall, Ae. albopictus reared at the lowest temperature regime demonstrated the highest vectorial capacity (0.53) and the highest transmission efficiency (57%). Increased temperature decreased vectorial capacity across groups yet more significant effects were measured with Ae. aegypti relative to Ae. albopictus. The results of this study suggest that future increases in temperature in the Americas could significantly impact vector competence, blood-feeding and longevity, and potentially decrease the overall vectorial capacity of Aedes mosquitoes in the Americas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call