Abstract

BackgroundSec8 is highly expressed in mammalian nervous systems and has been proposed to play a role in several aspects of neural development and function, including neurite outgrowth, calcium-dependent neurotransmitter secretion, trafficking of ionotropic glutamate receptors and regulation of neuronal microtubule assembly. However, these models have never been tested in vivo. Nervous system development and function have not been described after mutation of sec8 in any organism.ResultsWe identified lethal sec8 mutants in an unbiased forward genetic screen for mutations causing defects in development of glutamatergic Drosophila neuromuscular junctions (NMJs). The Drosophila NMJ is genetically malleable and accessible throughout development to electrophysiology and immunocytochemistry, making it ideal for examination of the sec8 mutant synaptic phenotype. We developed antibodies to Drosophila Sec8 and showed that Sec8 is abundant at the NMJ. In our sec8 null mutants, in which the sec8 gene is specifically deleted, Sec8 immunoreactivity at the NMJ is eliminated but immunoblots reveal substantial maternal contribution in the rest of the animal. Contrary to the hypothesis that Sec8 is required for neurite outgrowth or synaptic terminal growth, immunocytochemical examination revealed that sec8 mutant NMJs developed more branches and presynaptic terminals during larval development, compared to controls. Synaptic electrophysiology showed no evidence that Sec8 is required for basal neurotransmission, though glutamate receptor trafficking was mildly disrupted in sec8 mutants. The most dramatic NMJ phenotype in sec8 mutants was an increase in synaptic microtubule density, which was approximately doubled compared to controls.ConclusionSec8 is abundant in the Drosophila NMJ. Sec8 is required in vivo for regulation of synaptic microtubule formation, and (probably secondarily) regulation of synaptic growth and glutamate receptor trafficking. We did not find any evidence that Sec8 is required for basal neurotransmission.

Highlights

  • Sec8 is highly expressed in mammalian nervous systems and has been proposed to play a role in several aspects of neural development and function, including neurite outgrowth, calcium-dependent neurotransmitter secretion, trafficking of ionotropic glutamate receptors and regulation of neuronal microtubule assembly

  • We found that sec8 mutant neuromuscular junctions (NMJs) show no obvious defect in growth of presynaptic arborizations or neurotransmitter secretion, but do show mild defects in glutamate receptor trafficking and relatively dramatic alterations in synaptic microtubule density

  • Because the P{SUPor-P}CG2095KG02723 P element insertion mutant represents a mutation in the Drosophila sec8 gene, we refer to this allele as 'sec8P1'

Read more

Summary

Introduction

Sec is highly expressed in mammalian nervous systems and has been proposed to play a role in several aspects of neural development and function, including neurite outgrowth, calcium-dependent neurotransmitter secretion, trafficking of ionotropic glutamate receptors and regulation of neuronal microtubule assembly. These models have never been tested in vivo. The Sec6/8 complex, or 'exocyst', is an octomeric protein complex thought to comprise the proteins Sec, Sec, Sec, Sec, Sec, Sec, Exo and Exo84 This complex has been most extensively studied in yeast, where it is required for membrane trafficking and secretion [1,2]. We confirmed the KG02723 P-element insertion site in CG2095 by sitespecific PCR primers

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call