Abstract

Aging is associated with a decline of cardiac function. The mitochondrial permeability transition (MPT) may be a factor in cardiac dysfunction associated with aging. We investigated the effect of aging and long-term treatment with melatonin (approximately 10 mg/kg b.w./day for 2 months), a known natural antioxidant, on the susceptibility to Ca(2+)-induced MPT opening and cytochrome c release in rat heart mitochondria. The mitochondrial content of normal and oxidized cardiolipin as a function of aging and melatonin treatment was also analyzed. Mitochondria from aged rats (24 month old) displayed an increased susceptibility to Ca(2+)-induced MPT opening, associated with an elevated release of cytochrome c, when compared with young control animals (5 month old). Melatonin treatment counteracted both these processes. Aging was also associated with an oxidation/depletion of cardiolipin which could be counteracted as well by melatonin. It is proposed that the increased level of oxidized cardiolipin could be responsible, at least in part, for the increased susceptibility to Ca(2+)-induced MPT opening and cytochrome c release in rat heart mitochondria with aging. Melatonin treatment counteracts both these processes, most likely, by preventing the oxidation/depletion of cardiolipin. Our results might have implications in the necrotic and apoptotic myocytes cell death in aged myocardium, particularly in ischemia/reperfusion injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.