Abstract

Hereditary equine regional dermal asthenia (HERDA) is a genetic disorder of collagen resulting in fragile, hyper-extensible skin and ulcerative lesions. The predominance of skin lesions have been shown to occur on the dorsum of HERDA-affected horses. While this has been postulated to be due to increased exposure to sunlight of these areas, the precise pathological mechanism which causes this to occur is unclear. We hypothesized that an increase in collagenase activity, that has been associated with the exposure of dermal fibroblasts to sunlight, will significantly degrade the material properties of skin from HERDA-affected horses when compared to unaffected controls. Six unaffected and seven HERDA-affected horses, all euthanized for other reasons. Full-thickness skin samples from similar locations on each horse were collected and cut into uniform strips and their material properties (tensile modulus) determined by mechanical testing before (n = 12 samples/horse) or after (n = 12 samples/horse) incubation in bacterial collagenase at 37°C for 6 h. The change in modulus following treatment was then compared between HERDA-affected and unaffected horses using a Student's t-test. The modulus of skin from HERDA-affected horses decreased significantly more than that from unaffected horses following collagenase treatment (54 ± 7% versus 30 ± 16%, P = 0.004). The significant decrease in the modulus of skin from HERDA-affected horses following collagenase exposure suggests that their altered collagen microarchitecture is more susceptible to enzymatic degradation and may explain the localization of skin lesions in HERDA-affected horses to those areas of the body most exposed to sunlight. These findings appear to support the previously reported benefits of sunlight restriction in HERDA-affected horses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.