Abstract

Three strains of human diploid fibroblasts, TIG-3, TIG-7, and MRC-5, were serially cultivated. The susceptibility of early-passage and late-passage cells at 20-30 and 60-70 population doubling levels, respectively, to hydrogen peroxide, the superoxide radical (exposure to the hypoxanthine-xanthine oxidase system), or linoleic acid hydroperoxide was examined for lactate dehydrogenase release. The susceptibility of late-passage cells to such oxidative stress was considerably enhanced compared with early-passage cells. The concentration of reduced glutathione in late-passage cells was lower by 24-44% on a per-cell-number basis and by 86.0-94.5% on a per-protein-quantity basis than in early-passage cells. In addition, the activity of catalase in late-passage cells was lower by 19-46% compared with early-passage cells. There was, however, no difference between the mRNA levels of catalase in early-passage and late-passage cells. The activities and mRNA levels of copper/zinc superoxide dismutase, manganese superoxide dismutase, and glutathione peroxidase in late-passage cells were all higher than in early-passage cells. These results suggest that late-passage cells are more susceptible to oxidative stress than early-passage cells presumably because of decreases in cellular reduced glutathione concentration and catalase activity, and that their primary defense against oxidative stress is reduced glutathione.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call