Abstract

The superconductivity of carbon nanotube (CNT) doped MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> sintered in pulsed magnetic field (PMF) was investigated with Raman scattering measurements and Raman spectral fit analysis. Although the carbon (C) substitution for the boron (B) is increased for the sample sintered in PMF, its superconductivity is advanced comparing with the sample sintered without PMF. The improved critical transition temperature, T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> , is attributed to the strengthening of the electron-phonon coupling (EPC) in MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , as reflected by the broadened <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2g</sub> mode in the Raman spectra, because the carbon atoms are homogeneously distributed in the boron planes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call