Abstract
We aimed to evaluate the effects of feeding super-conditioned corn at different temperatures on intake, growth performance, total-tract starch digestibility, rumen fermentation, blood metabolites, and feeding behavior of dairy calves. Thirty-six Holstein female dairy calves (40 ± 1.72 kg of body weight, ± SD) were randomly assigned to 1 of the following 3 treatments: (1) ground corn (control; CON; n = 12), (2) corn super-conditioned at 75°C (T-75; n = 12), and (3) corn super-conditioned at 95°C (T-95; n = 12). Three mash starter feeds with an identical nutritional composition were blended with 5% chopped alfalfa hay and fed to individually-housed calves from d 3 to 77 of their birth. All calves were fed 4 L/d of pasteurized whole milk twice daily since d 3 to 56, followed by 2 L/d of morning feeding from d 57 to 63 of age. Calves were weaned on d 63 and remained in the study until d 77. The T-75 and T-95 diets increased total-tract starch digestibility compared with the CON diet. Dry matter intake and weaning or final BW were not affected by treatments; however, average daily gain and feed efficiency increased in calves fed T-95 in the overall period. The T-95 diet increased withers height and tended to increase hip height compared with other diets, but feeding behavior did not change throughout the experimental period. Ruminal pH decreased in calves fed the T-95 diet compared with T-75 and CON diets. The molar proportion of ruminal propionate increased, whereas the acetate-to-propionate ratio tended to decrease in calves fed the T-95 compared with CON diet. Calves fed the T-95 diet had the highest blood glucose concentration, whereas a trend for increased insulin concentration was observed in calves fed T-95 compared with other diets. In conclusion, super-conditioning temperature of corn (T-95 vs. T-75 and CON) improved the average daily gain, feed efficiency, and skeletal growth, but did not influence dry matter intake during the first 77 d of age. Finally, the total-tract starch digestibility increased, whereas ruminal pH dropped during the postweaning period as super-conditioning temperature elevated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.