Abstract

Heart failure is associated with reduced function of sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a) but increased function of sarcolemmal Na+/Ca2+ exchanger (NCX), leading to decreased SR Ca2+ content and loss of frequency-potentiation of contractile force. We reported that SERCA2a-overexpression in transgenic rat hearts (TG) results in improved contractility. However, it was not clear whether TG have improved contractility due to frequency-dependent improved SR Ca2+ handling. Therefore, we characterized TG (n=35) vs. wild-type (WT) control rats (n=39) under physiological conditions (37 degrees C, stimulation rate <8 Hz). Twitch force, intracellular Ca2+ transients ([Ca2+]i), and SR Ca2+ content were measured in isolated muscles. The contribution of transsarcolemmal Ca2+ influx (I(Ca)) through L-type Ca2+ channels (LTCC) and reverse mode NCX (I(Na/Ca)) to Ca2+ cycling were studied in isolated myocytes. With increasing frequency, force increased in TG muscles by 168+/-35% (8 Hz; P<0.05) and SR Ca2+ content increased by maximally 118+/-31% (4 Hz; P<0.05). In WT, there was a flat force-frequency response without changes in SR Ca2+ content. Relaxation parameters of force and [Ca2+]i decay were accelerated at each frequency in TG vs. WT by approximately 10%. At prolonged rest intervals (<240 s), force and SR Ca2+ content increased significantly more in TG. Consequently, absolute SR Ca2+ content measured in myocytes was increased approximately 2-fold in TG. Transsarcolemmal Ca2+ fluxes estimated by I(Ca) (at 0 mV -10.2+/-1.1 vs. -16.9+/-1.3 pA/pF) and I(Na/Ca) (0.17+/-0.02 vs. 0.46+/-0.05 pA/pF) were decreased in TG vs. WT (P<0.05), whereas NCX and LTCC protein expression was only slightly reduced (P=n.s.). In summary, SERCA2a-overexpression improved contractility in a frequency-dependent way due to increased SR Ca2+ loading whereas transsarcolemmal Ca2+ fluxes were decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.