Abstract

Pulmonary surfactant protein D (SP-D) is an important component of the pulmonary innate immune system with the ability to dampen cigarette smoke-induced lung inflammation. However, cigarette smoking mediates translocation of SP-D from the lung to the blood, and serum SP-D (sSP-D) has therefore previously been suggested as marker for smoke-induced lung injury. In support of this notion, associations between high sSP-D and low lung function measurements have previously been demonstrated in smokers and in chronic obstructive lung disease (COPD). The present investigations employ a 12-yr longitudinal Danish twin study to test the hypothesis that baseline sSP-D variation has the capacity to identify smokers with normal baseline lung function who are at high risk of significant future smoke-induced lung function decline. We find that sSP-D is significantly increased in those with normal lung function at baseline who develop lung function decline during follow-up compared with those who stay lung healthy. Moreover, we demonstrate that it is the smoke-induced baseline sSP-D level, and not the constitutional level, which has capacity as biomarker, and which is linearly increased with the decline in lung function during follow-up. In conclusion, we here present first observation of increased sSP-D for identification of high-risk smokers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call