Abstract

BackgroundBone repair alteration is hypothesized for nonunion fracture pathogenesis. Since it is involved in osteoclast regulation, the RANK/RANKL/OPG system (receptor activator of nuclear factor kB/its ligand/osteoprotegerin) may play a role.Materials and methodsSerum OPG, free RANKL, bone alkaline phosphatase (BAP), osteocalcin (OC), and urinary deoxypyridinoline (DPD) were determined in 16 male patients (20–39 years) with long bone atrophic nonunion fractures. Serum markers were also measured in 18 age-matched male controls who healed from the same type of fractures within six months, and in 14 age-matched male controls who were healing from the same fractures one month after injury. One-way ANOVA and Bonferroni’s test were used for statistical analysis.ResultsOnly OPG was significantly higher (0.56 sd 0.11 ng/ml) in the patients compared to healed (0.26 sd 0.04 ng/ml; P < 0.001) and healing (0.29 sd 0.09 ng/ml; P < 0.001) controls. The patients’ DPD levels were normal. No correlations were found between bone markers and the characteristics of the subjects in all groups.ConclusionsA normal steady state of bone metabolism seems to be present in patients with atrophic nonunion fractures, despite the high serum OPG. The reason for the inability of the patients’ OPG to inhibit osteoclastic activity is unknown. Osteoblast activity also appears normal, so another cellular source of OPG can be hypothesized.

Highlights

  • Bone repair alteration is hypothesized for nonunion fracture pathogenesis

  • In our patients with atrophic nonunion shaft fractures, the mean serum OPG level was significantly increased with respect to healed and healing controls, whereas the values of the other serum bone markers did not differ between the three cohorts

  • The significantly higher serum OPG level in the patients may suggest an imbalance in the receptor activator nuclear factor kB (RANK)/RANKL/OPG system, with osteoclast downregulation promoting a net apposition of new bone tissue

Read more

Summary

Introduction

Bone repair alteration is hypothesized for nonunion fracture pathogenesis. Since it is involved in osteoclast regulation, the RANK/RANKL/OPG system (receptor activator of nuclear factor kB/its ligand/osteoprotegerin) may play a role. Materials and methods Serum OPG, free RANKL, bone alkaline phosphatase (BAP), osteocalcin (OC), and urinary deoxypyridinoline (DPD) were determined in 16 male patients (20–39 years) with long bone atrophic nonunion fractures. Serum markers were measured in 18 agematched male controls who healed from the same type of fractures within six months, and in 14 age-matched male controls who were healing from the same fractures one month after injury. One-way ANOVA and Bonferroni’s test were used for statistical analysis

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call