Abstract

BackgroundGuillain-Barré syndrome (GBS) is an autoimmune disease that results in demyelination and axonal damage. Five percent of patients die and 20% remain significantly disabled on recovery. Recovery is slow in most cases and eventual disability is difficult to predict, especially early in the disease. Blood or cerebrospinal fluid (CSF) biomarkers that could help identify patients at risk of poor outcome are required. We measured serum neurofilament light chain (sNfL) concentrations from blood taken upon admission and investigated a correlation between sNfL and clinical outcome.MethodsBaseline sNfL levels in 27 GBS patients were compared with a control group of 22 patients with diagnoses not suggestive of any axonal damage. Clinical outcome parameters for GBS patients included (i) the Hughes Functional Score (HFS) at admission, nadir, and discharge; (ii) the number of days hospitalised; and (iii) whether intensive care was necessary.ResultsThe median sNfL concentration in our GBS sample on admission was 85.5 pg/ml versus 9.1 pg/ml in controls. A twofold increase in sNfL concentration at baseline was associated with an HFS increase of 0.6 at nadir and reduced the likelihood of discharge with favourable outcome by a factor of almost three. Higher sNfL levels upon admission correlated well with hospitalisation time (rs = 0.69, p < 0.0001), during which transfer to intensive care occurred more frequently at an odds ratio of 2.4. Patients with baseline sNfL levels below 85.5 pg/ml had a 93% chance of being discharged with an unimpaired walking ability.ConclusionssNfL levels measured at hospital admission correlated with clinical outcome in GBS patients. These results represent amounts of acute axonal damage and reflect mechanisms resulting in disability in GBS. Thus, sNfL may serve as a convenient blood-borne biomarker to personalise patient care by identifying those at higher risk of poor outcome.

Highlights

  • The prognosis in some cases of Guillain-Barré syndrome (GBS) is rather poor—a fact partly attributed to the challenge of identifying these patients early in their presentation

  • Study population For this retrospective study, we screened our local biobank for suspected diagnoses of GBS or acute inflammatory demyelinating polyradiculoneuropathy (AIDP) or acute motor axonal neuropathy (AMAN) or acute motor and sensory axonal neuropathy (AMSAN) or Miller-Fisher syndrome from April 2014 through February 2018

  • Clinical history and nerve conduction were compatible with the diagnosis of GBS All 27 patients fulfilled levels 1 or 2 of the Brighton diagnostic criteria regarding their clinical presentation: bilateral and flaccid weakness of the limbs, decreased or absent deep tendon reflexes, monophasic course and no alternative explanation for their symptoms

Read more

Summary

Introduction

The prognosis in some cases of Guillain-Barré syndrome (GBS) is rather poor—a fact partly attributed to the challenge of identifying these patients early in their presentation. The diagnosis of GBS remains clinical, yet it is interlaced with published criteria for GBS that encompass nerve conduction studies (NCS) and analyses of cerebrospinal fluid (CSF) [4, 5]. Guillain-Barré syndrome (GBS) is an autoimmune disease that results in demyelination and axonal damage. Five percent of patients die and 20% remain significantly disabled on recovery. Recovery is slow in most cases and eventual disability is difficult to predict, especially early in the disease. Blood or cerebrospinal fluid (CSF) biomarkers that could help identify patients at risk of poor outcome are required. We measured serum neurofilament light chain (sNfL) concentrations from blood taken upon admission and investigated a correlation between sNfL and clinical outcome

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call