Abstract
BackgroundThe disruption of endothelial homeostasis is a major determinant in the pathogenesis of systemic sclerosis (SSc) and is reflected by soluble and cellular markers of activation, injury and repair. We aimed to provide a combined assessment of endothelial markers to delineate specific profiles associated with SSc disease and its severity.MethodsWe conducted an observational, single-centre study comprising 45 patients with SSc and 41 healthy control subjects. Flow cytometry was used to quantify circulating endothelial microparticles (EMPs) and CD34+ progenitor cell subsets. Colony-forming unit-endothelial cells (CFU-ECs) were counted by culture assay. Circulating endothelial cells were enumerated using anti-CD146-based immunomagnetic separation. Blood levels of endothelin-1, vascular endothelial growth factor (VEGF) and soluble fractalkine (s-Fractalkine) were evaluated by enzyme-linked immunosorbent assay. Disease-associated markers were identified using univariate, correlation and multivariate analyses.ResultsEnhanced numbers of EMPs, CFU-ECs and non-haematopoietic CD34+CD45− endothelial progenitor cells (EPCs) were observed in patients with SSc. Patients with SSc also displayed higher serum levels of VEGF, endothelin-1 and s-Fractalkine. s-Fractalkine levels positively correlated with CD34+CD45− EPC numbers. EMPs, s-Fractalkine and endothelin-1 were independent factors associated with SSc. Patients with high CD34+CD45− EPC numbers had lower forced vital capacity values. Elevated s-Fractalkine levels were associated with disease severity, a higher frequency of pulmonary fibrosis and altered carbon monoxide diffusion.ConclusionsThis study identifies the mobilisation of CD34+CD45− EPCs and high levels of s-Fractalkine as specific features of SSc-associated vascular activation and disease severity. This signature may provide novel insights linking endothelial inflammation and defective repair processes in the pathogenesis of SSc.
Highlights
The disruption of endothelial homeostasis is a major determinant in the pathogenesis of systemic sclerosis (SSc) and is reflected by soluble and cellular markers of activation, injury and repair
SSc-related features are shown in Table 2, and the ongoing treatments are reported in Additional file 1: Table S1
The demographic characteristics of patients with SSc were comparable to those of the healthy control subjects, except for higher mean age, lower body mass index (BMI) and lower arterial blood pressure observed in the patients with SSc (Table 1)
Summary
The disruption of endothelial homeostasis is a major determinant in the pathogenesis of systemic sclerosis (SSc) and is reflected by soluble and cellular markers of activation, injury and repair. The disruption of endothelial integrity involves an altered balance between lesion and repair processes that can be assessed by non-invasive endothelium-derived biomarkers which our group has contributed to identify and standardise [3, 4]. These markers include circulating endothelial cells (CECs) that enter the bloodstream following detachment of stressed endothelial cells from the vessel wall and endothelial microparticles (EMPs) that are shed during the membrane remodelling of activated or apoptotic endothelial cells. These markers have been shown to have diagnostic and prognostic value in cardiovascular diseases [4,5,6], but their significance in inflammatory and autoimmune diseases is less well established [7,8,9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.