Abstract

The platelet-derived growth factor receptor (PDGFR) is a tyrosine kinase, implicated in the development and progression of different tumors, including gliomas. Chemoresistance is a common feature of malignant gliomas. Since receptor tyrosine kinases contribute to chemoresistance in tumors, we addressed whether PDGFR signaling might confer selective growth advantage to chemoresistant cells. The effects of the PDGFR inhibitor STI571 on proliferation and PDGFR signaling were compared in chemosensitive and cisplatin-selected, chemoresistant sublines derived from glioma and from two other PDGFR-expressing tumors (ovarian carcinoma and neuroblastoma). The chemoresistant glioma U87/Pt cells were twofold more sensitive to STI571 growth-inhibitory effects than the chemosensitive U87 cells, and two- to threefold more sensitive than five unrelated glioma cell lines. The other two paired cell lines were equally responsive. Sensitization of U87/Pt cells correlated with upregulation of the PDGF-B isoform and with PDGF-BB-induced Akt overactivation, which was prevented by STI571. STI571 specifically inhibited PDGF-BB-, but not PDGF-AA- or stem cell factor-mediated signaling. In serum-containing medium, STI571 decreased phospho-Akt in U87/Pt cells, but not in U87, while activating extracellular signal-regulated kinase (Erk) in both. STI571 antiproliferative effects were partially reverted by constitutively active Akt. Cotreatment with inhibitors of phosphatidylinositol 3'-kinase (PI3K) or mitogen-activated protein kinase kinase (MEK) resulted in enhanced growth inhibition in glioma cells. Our results suggest that increased PDGF-BB signaling may sensitize chemoresistant glioma cells to STI571, suggesting a therapeutic potential for STI571 in patients with malignant gliomas refractory to chemotherapy. Simultaneous blockade of PDGFR and PI3K or Erk pathway may enhance therapeutic targeting in gliomas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.