Abstract

Root hairs are unicellular elongations of certain rhizodermal cells that improve the uptake of sparingly soluble and immobile soil nutrients. Among different Arabidopsis thaliana genotypes, root hair density, length and the local acclimation to low inorganic phosphate (Pi) differs considerably, when analyzed on split agar plates. Here, genome-wide association fine mapping identified significant single nucleotide polymorphisms associated with the increased root hair density in the absence of local phosphate on chromosome 1. A loss-of-functionmutant of the candidate transcription factor gene WRKY6, which is involved in the acclimation of plants to low phosphorus, had increased root hair density. This is partially explained by a reduced cortical cell diameter in wrky6-3, reducing the rhizodermal cell numbers adjacent to the cortical cells. As a consequence, rhizodermal cells in positions that are in contact with two cortical cells are found more often, leading to higher hair density. Distinct cortical cell diameters and epidermal cell lengths distinguish other Arabidopsis accessions with distinct root hair density and −Pi response from diploid Col-0, while tetraploid Col-0 had generally larger root cell sizes, which explain longer hairs. A distinct radial root morphology within Arabidopsis accessions and wrky6-3explains some, but not all, differences in the root hair acclimation to –Pi.

Highlights

  • The essential macronutrient phosphorus is mainly taken up by plant roots as inorganic ortho-phosphate (Pi)

  • Genome wide association (GWA) mapping had identified candidate genes potentially involved in root hair density and surface acclimation to the absence of Pi

  • WRKY6 encodes a transcription factor that physically interacts with the PHO1 promoter and is involved in Pi homeostasis (Chen et al, 2009)

Read more

Summary

Introduction

The essential macronutrient phosphorus is mainly taken up by plant roots as inorganic ortho-phosphate (Pi). Phosphate is sparingly soluble in soil and forms plant-unavailable precipitations with iron and aluminum at low acidic pH. The plant available Pi is low at alkaline pH, where Pi is bound to calcium. Phosphate is absorbed and bound to soil particle surfaces, which drastically reduces the Pi soil mobility, so that mass flow contributes very little to Pi nutrition (Marschner, 2011). Plant roots use sophisticated mechanisms to increase the solubility of soil phosphate, and form fine roots in soil areas close to the surface, where the highest Pi concentrations are found (Vance, Uhde-Stone & Allan, 2003). As the Pi diffusion in soil is very low, the root surface area is further increased at low Pi by promoting root hair growth and density (Müller & Schmidt, 2004). Efficient Pi usage by crops is of crucial importance as global high

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.